skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wessel, Alan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the linear rheology for dense suspensions of sterically stabilized smooth and mesoscopically rough colloids interacting as hard particles. Small amplitude oscillatory measurements reveal that rough colloids at high volume fractions exhibit storage and loss moduli that are orders of magnitude greater than smooth colloids. Frequency-concentration superposition is used to collapse the viscoelasticity data onto a master curve, where shift factors suggest a more elastic microstructure and reduced cage volume for rough particles. A combination of the mode-coupling theory, hydrodynamic modeling, and the activated hopping theory shows that these rough particles with significantly reduced localization lengths tend to become trapped in their glassy cages for extended periods of time. High-frequency data show that rough colloids, but not smooth colloids, display a transition from a free-draining to a fully lubricated state above the crossover volume fraction and, furthermore, exhibit solidlike behavior. Scaling analyses support the idea that lubrication forces between interlocking asperities are enhanced, leading to rotational constraints and stress-bearing structures that significantly elevate the viscoelasticity of dense suspensions. The results provide a framework for how particle surface topology affects the linear rheology in applications such as coatings, cement, consumer products, and shock-absorbing materials. 
    more » « less